Колесный рычаг для поднятия различных тяжестей

Как сделать ручную лебедку из подручного материала

Вес предметов бывает таким, что одному, а то и впятером, сдвинуть их с места вручную не получается, а надо. В таких случаях пригодится самодельное приспособление для подъема тяжестей или их перемещения. Ручная лебедка — самое востребованное устройство в таком деле. Для гаража ручную лебёдку своими руками сделать совсем нетрудно даже в домашних условиях. Но сначала нужен расчет и чертеж механизма.

Разновидности подъемных устройств

Общим у блочка для подъема груза и строительного крана является использование идеи увеличения силы – правила рычага. Для того чтобы уравновесить груз на короткой стороне рычага, нужно приложить к длинной его стороне усилие меньше настолько, насколько короткое плечо меньше длинного. Соотношение сил на концах рычага называется передаточным числом.

Уравновесить и даже поднять тяжесть можно с усилием меньше его веса, но проделанный концом длинного рычага путь будет длиннее, чем у короткого, настолько же, насколько меньше сил для подъема было приложено. Выигрыша в работе (F1*L1=F2*L2) нет, но это и не требуется.

Использование закона Архимеда воплощается в разные подъемные механизмы, а как — зависит от назначения подъемника. Конструкции различаются по передаточному числу, принципу передачи усилия, мобильности, прочности, используемой энергии. Самые востребованные для самостоятельного изготовления виды:

  • полиспасты;
  • барабанные конструкции;
  • рычажный механизм.

Чтобы выбрать вид устройства, необходимого для конкретных работ, стоит ознакомиться с их возможностями и ограничениями.

Принцип работы полиспастов

Проще этого устройства для перемещения тяжелых предметов есть только металлический лом. Главный элемент – колесо с фаской по середине внешней поверхности, ось которого закреплена на потолочной балке. Через него можно перекинуть таль, и подъемник с передаточным числом 1 к 1 готов. Для увеличения рычага пропустим таль еще через одно незакрепленное колесо, ось которого соединена с грузом, а таль закрепим наверху конструкции.

Передаточный коэффициент станет равен 2. Теперь прикрепим к потолку еще одно колесо, а конец тали пропустим через него, закрепив на оси нижнего колеса. Передаточный коэффициент станет равным 3. И так далее, добавляя по одному колесу и меняя место крепления тали, можно увеличивать передаточное значение.

Расположение колес относительно друг друга может быть разным.

Наиболее компактны конструкции с одноосным расположением колес. В конструкции таких устройств две обоймы колес. Изучив чертежи полиспаста, своими руками собрать его не составит труда. Потребуются две обоймы:

  1. траверса;
  2. скоба для переноски;
  3. щека для монтажа деталей;
  4. колесо (блок);
  5. упор;
  6. подшипник;
  7. втулка;
  8. ось;
  9. держатель оси;
  10. масленка для подшипников;
  11. ограничитель тали;
  12. гайка;
  13. подшипник;
  14. щека.

Конец тали закрепляется на одной из обойм.

Есть у полиспастов и недостатки. Для увеличения передаточного числа на 1 нужно каждый раз добавлять одно колесо, в результате растет вес механизма. Кроме того, для сгибания троса на каждом колесе тратится сила, снижая КПД устройства. Можно снизить эти потери, увеличив диаметр колес, но одновременно произойдет увеличение веса и габаритов полиспаста. Этих недостатков нет у другого вида подъемников.

Ручные барабанные лебедки

Принцип работы лебедок напоминает простейший рычаг, закрепленный в точке опоры. Если короткое плечо рычага будет поверхностью цилиндра, а груз будет прикреплен к нему тросом, получится лебедка с передаточным числом, равным соотношению длины рычага и радиуса цилиндра. Для исключения обратного вращения на ось ставят храповый механизм с подпружиненной собачкой — трещотка. Собрать такую ручную лебедку своими руками можно по чертежу:

Однако, для большого передаточного числа системы потребуется очень длинная рукоять, а это неудобно. Выход найден в двух разновидностях барабанных лебедок, увеличивающих передаточное число при помощи шестеренок или червячной передачи.

Как сделать лебедку своими руками, используя червячную передачу, можно посмотреть на чертеже:

Трещотка в такой конструкции не нужна, передаточное число, когда гребень червяка проходит по каждому зубу шестерни, равно количеству зубьев шестерни, умноженному на соотношение длины рукояти к радиусу червяка. Но существенным недостатком будет трение между зубцами и гребнем. Требуется постоянная смазка механизма.

С гораздо меньшим трением работает редуктор из шестеренок. При использовании принципа передачи силы парой шестеренок разного диаметра ручную барабанную лебедку своими руками проще всего сделать так:

Обратите внимание, что стопор в таких устройствах необходим. Такая конструкция применяется при небольшой высоте или длине перемещения груза. Увеличить расстояние перемещения поможет тросоукладчик, равномерно распределяющий трос по длине цилиндра. Проще всего результат получить, применяя подпружиненную пластину или стержень, прижимающие трос к барабану:

Рычажные подъемники

Самое популярное применение рычажных подъемных механизмов — это автомобильный домкрат. В качестве универсального устройства его применяют реже, так как высота подъема невелика и ограничена.

Подъем груза происходит в результате многократных небольших перемещений площадки между фиксированными позициями на рейке. В домашнем хозяйстве редко находит применение. Положительным качеством рычажных систем является надежность и долговечность.

Упрощение сборки устройства

В домашних условиях можно использовать подручные материалы и готовые передаточные узлы. Например, трещетка, используемая в автомобиле КАМАЗ для выравнивания тормозного усилия — это готовый червячный передаточный механизм.

Можно надолго избавиться от ручного поднятия тяжестей, если для работы один раз собрать систему мотолебедки своими руками. Для этого надо поставить на ось привода лебедки шестерню, соединив ее цепью с ведущей звездочкой бензопилы на жесткой конструкции корпуса.

Сочетая блоковые механизмы с барабанными лебедками, можно работать, компенсировав недостатки каждого вида подъемников. Например, в полиспастах не предусматривают фиксатор, исключающий обратное движение тали, а барабанные лебеди устраняют это очень просто. Зато угол между вектором подъемной силы и вектором веса у полиспаста может быть практически любым, чем не могут похвастать лебедки.

Можно использовать в хозяйстве покупные подъемники, но, как правило, лебедки нужны там, где магазины далеко — и всегда срочно. Стоит поискать в гараже какие-нибудь детали для выхода из ситуации.

Колесный рычаг для поднятия различных тяжестей

Учебник Физика 7 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 страниц вышел из печати в июле 2015 г. в пятом издании. Учебник физики 7 класса рассчитан на 2 урока в неделю и содержит 6 тем курса физики, которые перечислены ниже.

Физика 7 класс, тема 01. Физические величины (7+2 ч)
Физика. Физическая величина. Измерение физических величин.
Цена делений шкалы прибора. Погрешность прямых и косвенных измерений.
Формулы и вычисления по ним. Единицы физических величин.
Метод построения графика. Физика 7 класс, тема 02. Масса и плотность (8+1 ч)
Явление тяготения и масса тела. Свойство инертности и масса тела.
Плотность вещества. Таблицы плотностей некоторых веществ.
Средняя плотность тел и их плавание.
Метод научного познания. Физика 7 класс, тема 03. Силы вокруг нас (13+2 ч)
Сила и динамометр. Виды сил.
Уравновешенные силы и равнодействующая.
Сила тяжести и вес тела. Сила упругости и сила трения.
Закон Архимеда. Вычисление силы Архимеда.
Простые механизмы. Правило равновесия рычага. Физика 7 класс, тема 04. Давление тел (10+0 ч)
Определение давления. Давление жидкости. Закон Паскаля. Давление газа.
Атмосферное давление. Барометр Торричелли. Барометр-анероид.
Вакуумметры. Манометры: жидкостные и деформационные.
Пневматические и гидравлические механизмы. Физика 7 класс, тема 05. Работа и энергия (9+1 ч)
Механическая работа. Коэффициент полезного действия. Мощность.
Энергия. Кинетическая и потенциальная энергия.
Механическая энергия. Внутренняя энергия.
Взаимные превращения энергии. Физика 7 класс, тема 06. Введение в термодинамику (15+2 ч)
Температура и термометры. Количество теплоты и калориметр.
Теплота плавления/кристаллизации и парообразования/конденсации.
Первый закон термодинамики. Двигатель внутреннего сгорания.
Теплота сгорания топлива и КПД тепловых двигателей.
Теплообмен. Второй закон термодинамики.

Учебник Физика 8 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в четвёртом издании. Учебник физики 8 класса рассчитан на 2 урока в неделю и содержит 5 тем курса физики, которые перечислены ниже.

Физика 8 класс, тема 07. Молекулярно-кинетическая теория (8+1 ч)
Из истории МКТ. Частицы вещества. Движение частиц вещества.
Взаимодействие частиц вещества. Систематизирующая роль МКТ.
Кристаллические тела. Аморфные тела. Жидкие тела. Газообразные тела.
Агрегатные превращения. Насыщенный пар. Влажность воздуха. Физика 8 класс, тема 08. Электронно-ионная теория (8+1 ч)
Строение атомов и ионов. Электризация тел и заряд.
Объяснение электризации. Закон сохранения электрического заряда.
Электрическое поле. Электрический конденсатор. Электрический ток.
Электропроводность жидкостей, газов и полупроводников. Физика 8 класс, тема 09. Постоянный электрический ток (13+2 ч)
Электрическая цепь. Сила тока. Электрическое напряжение. Работа тока.
Закон Ома для участка цепи. Сопротивление соединений проводников.
Закон Джоуля-Ленца. Электронагревательные приборы.
Полупроводниковые приборы. Переменный ток. Физика 8 класс, тема 10. Электромагнитные явления (8+1 ч)
Магнитное поле. Соленоид и электромагнит. Постоянные магниты.
Действие магнитного поля на ток. Электродвигатель на постоянном токе.
Электромагнитная индукция. Электротрансформатор. Передача электроэнергии.
Электродвигатель на переменном токе. Физика 8 класс, тема 11. Колебательные и волновые явления (9+2 ч)
Период, частота и амплитуда колебаний. Нитяной и пружинный маятники.
Механические волны. Свойства механических волн. Звук.
Электромагнитные колебания. Излучение и прием электромагнитных волн.
Свойства электромагнитных волн. Принципы радиосвязи и телевидения.

Учебник Физика 9 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в третьем издании. Учебник физики 9 класса рассчитан на 2 урока в неделю и содержит 4 темы курса физики, которые перечислены ниже.

Физика 9 класс, тема 12. Введение в кинематику (16+2 ч)
Что такое кинематика. Относительность движения. Путь и перемещение.
Сложение и вычитание векторов. Проекции векторов на координатные оси.
Равномерное движение. Мгновенная скорость. Равноускоренное движение.
Графическое описание движений. Равномерное движение по окружности. Физика 9 класс, тема 13. Введение в динамику (13+2 ч)
Что такое динамика. Первый, второй и третий законы Ньютона.
Законы Гука и Кулона-Амонтона. Закон всемирного тяготения.
Закон сохранения импульса. Реактивное движение.
Кинетическая энергия. Потенциальная энергия. Физика 9 класс, тема 14. Введение в оптику (11+1 ч)
Источники света. Прямолинейное распространение света. Отражение света.
Зеркала. Преломление света. Линзы. Оптические приборы.
Дисперсия света и цвета тел. Фотография и полиграфия.
Корпускулярно-волновой дуализм. Физика 9 класс, тема 15. Введение в квантовую физику (7+1 ч)
Физика XX века. Явление радиоактивности. Регистрация частиц.
Строение атома. Характеристики атомного ядра. Ядерные реакции.
Природа и свойства радиоактивных излучений. Энергия связи ядра.
Энергия ядерных реакций. Ядерная энергетика. Физика XXI века.

Для перехода к параграфам кликайте нумерацию 01 02 03 04 05 и т.д. вверху страницы. Параграфы каждой темы курса физики снабжены интерактивными вопросами и заданиями.

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

Kozazi › Блог › некоторые хитрости конструирования современных подвесок

Всякий водитель, ездивший на автомобиле Ford Fiesta первого поколения (Mk1), обращал внимание на практически полное отсутствие кренов этой машины (особенно при загрузке 1-2 человека) даже в очень напряженных поворотах. А ведь у Фиесты в подвесках вообще нет стабилизатора поперечной устойчивости — детали, ставшей в современных машинах настолько распространенной, что многие уже и не понимают, как можно бороться с кренами кузова без использования стабилизатора.
Это заблуждение столь распространено, что многие и не задумываются — почему в независимых подвесках практически любого “формульного” спортивного болида (и не только F1, а и более “приземленных” серий типа Formula Ford или Formula Renault) нет никаких стабилизаторов. Для многих открытие этого факта стало настоящим шоком. Попробуем же разобраться — в чем тут дело.
Прежде всего подумаем — а чем же плох стабилизатор поперечной устойчивости. Ведь крены он уменьшает вполне успешно — так почему же конструкторы спортивных подвесок его не используют?
Рассмотрим простую ситуацию: автомобиль с независимой подвеской едет по дороге, и неожиданно наезжает правым колесом на кирпич. Предположим, что автомобиль едет достаточно быстро, и за время наезда кузов (ввиду большой массы и, соответственно, инерции) не успевает совершить сколько-нибудь существенного вертикального перемещения. Для простоты (чтобы не рассчитывать поправки на сжатие шины) будем считать шину несжимаемой — для современных низкопрофильных шин это практически так и есть. При этом допущении правое колесо благодаря подвеске совершит ход вверх, равный толщине кирпича — причем никакой стабилизатор этому помешать не сможет.
Для полностью независимой подвески без стабилизатора удар, передаваемый на кузов машины, в этом случае будет определяться лишь жесткостью пружины правой подвески и незначительным усилием хода амортизатора вверх, а левая подвеска останется неподвижной.
Совсем иное дело, если у нас имеется стабилизатор поперечной устойчивости. Ход правой подвески (на ту самую толщину кирпича) закручивает стабилизатор, и он передает дополнительное усилие на левый рычаг, пружину и амортизатор, вызывая их сжатие. Даже если жесткость стабилизатора всего лишь равна жесткости левой пружины (а во многих подвесках она намного выше — иначе стабилизатор не будет эффективен против кренов) — это означает, что левая подвеска будет также пробита, правда, лишь на половину толщины кирпича. Однако и такой ход левой подвески будет означать усиление удара, передаваемого на кузов, в полтора раза по сравнению с ситуацией без стабилизатора.
Казалось бы — ситуацию можно парировать, пропорционально ослабив пружины подвески. Но это лишь кажется — дело в том, что при одновременном нагружении правой и левой подвесок стабилизатор не работает, и подвески оказываются слишком ослабленными. То есть — машина плохо переносит поперечные волны асфальта (а тем более “лежачих полицейских”) и оказывается склонна к глубоким “кивкам” при торможении. А если ослабить стабилизатор — он станет неэффективен против кренов кузова.
Причем эта ситуация для независимой подвески со стабилизатором принципиально неустранима — она либо менее комфортна, чем чистая независимая подвеска без стабилизатора, либо при той же комфортности хуже парирует продольную раскачку и “клевки” кузова. И чем жестче стабилизатор — тем эти неустранимые проблемы значительнее.
В качестве дополнительных минусов выступают:
1. Ухудшение проходимости (частичное диагональное вывешивание) из-за разгрузки идущих вниз колес на неровностях за счет закрутки стабилизатора идущим вверх колесом противоположного борта. Именно поэтому все настоящие джипы столь склонны к кренам в поворотах, а их стабилизаторы поперечной устойчивости, если даже они имеются, очень слабы.
2. Неоптимальность настроек амортизаторов для ситуаций симметричной и несимметричной нагрузки подвесок — опять же из-за переменного влияния жесткости стабилизатора при неизменных неподрессоренных массах.
Что же делать?

БЕЗ СТАБИЛИЗАТОРА И БЕЗ КРЕНОВ
А ведь крены в повороте можно устранить и без использования стабилизатора поперечной устойчивости. Это, в конце концов, чисто геометрическая задача — надо лишь сделать подвеску такой геометрии, чтобы при известной свободе вертикального перемещения колес треугольник, образованный точками контакта колес с дорогой и центром масс машины, имел бы строго постоянные размеры либо, если это невозможно, как можно меньше изменял бы эти размеры и сохранял неизменную высоту своей вершины (с тем, чтобы вектор центробежной силы, исходя из центра масс, проходил через эту вершину).
Это задача трудная — но вполне разрешимая не только в случае сложной многорычажной подвески с неравноплечими рычагами (как у F1), но и даже для компактной подвески McPherson. Что как раз блестяще доказали инженеры Ford, проектируя в 1975 году автомобиль Фиеста.

ИДЕАЛ НЕДОСТИЖИМ
Но почему же такая схема не используется повсеместно? Ведь она предлагает сочетание минимальных кренов с наилучшими реакциями подвесок на неровности дороги и оптимальную проходимость благодаря полной развязке колес друг от друга?
К сожалению, эта схема имеет и определенные врожденные недостатки.
Недостаток номер 1 — для того, чтобы прямая В-А-D попала в центр масс ЦТ, у машин с типичными утилитарными компоновками (то есть с высоким центром тяжести, вызванным рядными вертикальными моторами и высокими кузовами) надо либо ставить колеса ненормально большого диаметра (опуская точку В), либо поднимать оси качания нижнего рычага А (что приводит к наклонным нижним рычагам из-за компоновочных трудностей с подъемом точки Е, особенно на переднеприводных машинах). Конструкторы Фиесты поставили наклонные рычаги — которые, естественно, вызывают изменение колеи машины при симметричных ходах подвески. Это изменение колеи составляет несколько сантиметров и очень хорошо заметно — когда Фиеста на полном ходу ловит поперечную волну асфальта, даже шины с высоким профилем протестующе взвизгивают. Впрочем, если используются сравнительно “пухлые” (высокопрофильные) шины, это почти не влияет на их долговечность — но вот для низкопрофильных спортивных шин ситуация гораздо хуже.
Кроме того, наклонные нижние рычаги вызывают некоторую реакцию на руле при проезде неровностей (боковое усилие на плече кастера) — однако для легкой машины типа Фиесты с нейтральными колесами (развал и схождение нулевые) и малым кастером этот эффект хотя и заметен, но не доставляет неудобств.
Справедливости ради надо сказать, что недостаток N1 не является абсолютно неустранимым — машины с очень низкими и тяжелыми оппозитными силовыми агрегатами (например, Subaru Impreza или Porshe-911) вполне могут иметь горизонтальные нижние рычаги, и при этом попадать точкой D в центр масс — просто ввиду того, что этот центр у них расположен очень низко. Что у них и сделано.
Одновременно конструкторы реализуют и второй путь — увеличение диаметра колес. Уже не редкость машины B-класса (то есть класса Фиесты) с 15-дюймовыми колесами — а ведь когда-то даже на Волге ГАЗ-24 стояли 13-дюймовые колеса…
Недостаток номер 2 — изменение настройки подвески при изменении загрузки машины. Это вызывается как изменением высоты центра масс машины, так и симметричной просадкой правой и левой подвесок — при которой точка D смещается вниз. Соответственно, как только точки D и ЦТ расходятся по высоте — крены начинают стремительно нарастать, и на Фиесте это очень хорошо заметно.
Этот недостаток принципиален и не может быть устранен ничем, кроме активной адаптивной подвески. Именно из-за этого недостатка Subaru все-таки ставит стабилизаторы поперечной устойчивости.
Недостаток номер 3 — изменение настройки подвески при изменении диаметра колес. Применительно к Фиесте Мк1 — колеса 13′ с резиной 80% высоты дают нейтральную настройку по крену для загрузки 2 человека спереди, а штатные 12′ колеса дают слегка положительную настройку даже для одного человека.
Также из внимательного рассмотрения геометрии на рис.1 можно увидеть несколько интересных моментов фиестовской передней подвески. Например, ее колеса имеют переменный развал — при средней загрузке он нейтральный, однако при просадке подвески развал становится положительным (расстояние между колесами сверху меньше, чем снизу), а при выходе подвески развал становится отрицательным. Это — чисто спортивный прием, который призван до некоторой степени компенсировать деформацию покрышки из-за боковой нагрузки в повороте. Разумеется, он начинает действовать тогда, когда появляются крены кузова — то есть, на практике, при значительной загрузке автомобиля.
Кроме того, при повороте руля колеса Фиесты наклоняются внутрь поворота на несколько градусов — это еще одно чисто гоночное решение для компенсации деформации шины от боковой центробежной силы. Это механизм работает всегда — вне зависимости от нагрузки.
К тому же, наклонные нижние рычаги вызывают при просадке подвески движение колеса наружу. Это вызывает на ухабах формальное расширение динамического коридора — однако одновременно дает очень интересные ощущения поведения машины, она как бы сама стремится уйти от неровности, оставить ухаб за бортом. Это одна из тех черт поведения, которые вместе создают поразительный образ услужливой и умной машины, которая “сама едет правильно”. Нечто подобное демонстрируют только машины Toyota — но они ведут себя спокойнее и скучнее (хотя, спору нет — еще предсказуемее и безопаснее), в то время как Фиеста Mk1 гораздо более заводная, веселенькая машинка, которая и сама может слегка подсыпать перчика (но именно слегка, не напрягая водителя и не переступая грань тупого постоянного непослушания), и водителя провоцируя ехать резче, активнее. Если опять пытаться сравнивать с японцами — это некоторый гибрид из тойотовской услужливости, хондовской спортивной остроты и некоторой специфической американской “неправильности” реакций машины — причем именно эта неправильность является завершающим штрихом в образе, позволяя Фиесте не казаться копией с японки, а иметь собственный, уникальный характер.
Причем это связано именно с настройками шасси — потому что даже с 53-сильным мотором характер у машины точно такой же. Отдельный вопрос, что с таким мотором сильно не похулиганишь — но для некоторых водителей это благо. Я лично, после того как поставил на Фиесту 96-сильный мотор, несколько месяцев вообще не мог спокойно ездить — не поверите, но даже Subaru Impreza WRX заводит не так сильно. Импреза, правда, и в управлении построже — таких ляпов, какие прощает Фиеста, она не простит. Видимо, это как раз и останавливало.
Но вернемся к подвеске. Отмеченное мной ранее изменение колеи при ходах подвески требует специфической конструкции рулевого механизма для компенсации сдвига колеса. Фордовские конструкторы выбрали наиболее логичное решение — они сделали рулевые тяги такой же длинны, как нижние рычаги подвески, и придали им такой же наклон. В результате получается типичный параллелограмм — и проблема неизменного угла поворота колеса вне зависимости от изменения колеи оказывается решена столь просто и элегантно, что большинство конструкторов, пытавшихся копировать “Фиесту”, даже не осознали ее наличия.
В общем, надо осознать следующее: в чистом виде компенсированная по крену подвеска очень чувствительна к изменениям развесовки машины, и требует точного согласования геометрических размеров своих составляющих — что не всегда возможно по компоновочным соображениям. Поэтому она идеальна для специальных спортивных машин, приемлима для легких машин со спортивным характером в ограниченном диапазоне нагрузок, и совершенно не подходит для больших утилитарных машин типа семейных универсалов.
Впрочем, возможность иметь на дешевом серийном компактном хэтчбеке одновременно формульный мотор (CVH 1600 — омологированный мотор Формулы Форд 80-х годов) и формульную свободную подвеску дорогого стоит — спасибо команде Ли Якокки, давшей нам в далеком 1975-м году такую возможность.

ОБЩАЯ ТЕОРИЯ ВСЕГО
Напоследок проведу небольшой ликбез по теории “подвескостроения” — что там зачем сделано и что означают различные термины.
Самое простое и, казалось бы, очевидное решение – прикрутить к машине колеса, как на телеге. То есть — вообще не делать никаких углов, поставить колесо параллельно осям машины. При этом колесо в ходе сжатия-отбоя остается перпендикулярным к дороге, в постоянном и надежном контакте с ней. Кстати — именно так стоят задние колеса на Фиесте, благодаря ее полузависимой задней подвеске с жесткой балкой.
Но вот на передних колесах совместить центральную плоскость вращения колеса и ось его поворота конструктивно довольно сложно (особенно если говорить о классической двухрычажной подвеске типа заднеприводных “жигулей”), поскольку обе шаровые опоры (а тем более шкворни, как на Волге или УАЗе) вкупе с тормозным механизмом внутрь колеса, как правило, не помещаются. А раз так, то плоскость качения и ось поворота расходятся на расстояние А, называемое плечом обката (при повороте колесо обкатывается вокруг оси ab) — см.рис.2. В движении сила сопротивления качению неведущего колеса создает на этом плече А ощутимый момент, скачкообразно меняющийся при проезде неровностей. Мало кому понравится езда с постоянно рвущимся из рук рулем! Кроме того, придется изрядно попотеть, преодолевая этот самый момент в повороте.

ТЯЖЕСТЬ НЕ В ТЯГОСТЬ С РЫЧАГОМ И БЛОКОМ

Кандидат технических наук Д. ЗЫКОВ.

В основе почти любого «классического» механизма лежит рычаг или блок. Самый простой рычаг — это обычная палка, лежащая на опоре. У рычага есть два плеча — длинное и короткое. Плечо — это расстояние от точки опоры рычага до точки приложения силы. Если быть совсем точным — до линии приложения силы (рис.1).

Замечательное свойство рычага заключается в том, что если к его короткому плечу приложить силу, повесить, например, груз, то, чтобы поднять его или удержать рычаг в равновесии, к длинному плечу придётся приложить силу во столько раз меньше веса груза, во сколько длинное плечо больше короткого. Произведение величины силы, приложенной к рычагу, на величину длины плеча этой силы в механике называется моментом силы. Размерность его — Ньютон×метр (Нм). Рычаг находится в равновесии, когда момент силы, приложенной к длинному плечу, равен моменту на коротком плече и направлен в противоположную сторону.

Этим свойством рычага люди научились пользоваться очень давно. Если нужно поднять тяжёлый камень, достаточно засунуть под него длинную крепкую палку или металлический лом, подложить под этот рычаг камешек поменьше или полено и нажать на длинный конец. Таким же образом можно поднять шкаф или холодильник (рис. 2). Между прочим, именно с использованием свойств рычага делают тележки для перевозки мебели в магазинах.

Не менее интересен блок. Это всего-навсего насаженный на прочную ось небольшой ролик с перекинутой через него верёвкой. Если ролик закрепить на высокой опоре, то будет удобно поднимать на верёвке небольшие грузы, например ведро с краской. Но никакого заметного облегчения в работе так не получить. А вот если взять два ролика, то можно здорово выиграть в силе.

Давайте посмотрим на схему (рис.3А). Представим, что верёвка двумя концами неподвижно закреплена на потолке, а внизу на ней висит ролик с приделанным к его оси крючком. На крючке висит груз. Верёвка — штука гибкая и способна сопротивляться только растяжению. Как говорят про такие предметы — на изгиб и сжатие они не работают. И в самом деле, гнуть, вязать и комкать верёвку можно сколько угодно, а порвать (если, конечно, она хорошая) сложно. Так вот, верёвка передаёт усилие от веса груза на точки подвески, причём каждая её ветвь ровно половину.

Теперь заменим одно из креплений верёвки на блок, прицепим его ось крепко к потолку, а ролику обеспечим возможность свободно вращаться (рис.3Б). Если верёвку не удерживать, то груз, понятно, грохнется на пол. А если придерживать? А если придерживать, то вы с удивлением заметите, что груз не падает, хотя сила, приложенная к верёвке, вдвое меньше веса груза! Ещё бы, посмотрите на схему: чтобы сохранить систему в равновесии, требуется именно такая сила! Попробуйте теперь поднять груз. Окажется, что сделать это намного легче, чем на верёвке, просто перекинутой через блок. Правда, времени подъём займёт больше. А почему? Да потому, что, выигрывая вдвое в силе, мы проигрываем во столько же раз в расстоянии. И это тоже отлично видно на схеме.

Если вместо одной пары блоков взять две, то выигрыш в силе ещё раз удвоится, а если три — то выигрыш возрастёт в шесть раз (рис.4). Такая конструкция из нескольких блоков называется полиспастом. Их используют в подъёмных кранах, лифтах, на парусниках для подъёма парусов. Из нескольких блоков можно сделать небольшую, но очень удобную и полезную в хозяйстве ручную лебёдку.

Подписи к иллюстрациям

Рис. 1. Плечо рычага — это расстояние от точки опоры (она обозначена буквой А) до линии приложения силы F. Величину плеча на рисунке легко определить, построив из точки опоры перпендикуляр к линии действия силы и измерив его длину. Это и будет плечо. Заметим: длина рычага (обозначена буквой L) всегда больше (или в крайнем случае равна) величины плеча. Рычаг находится в равновесии, если моменты сил, приложенных к его плечам, равны друг другу и направлены в противоположные стороны.

Рис. 2. Конструкция тележки для перевозки мебели основана на свойствах рычага. Момент от веса груза: М1 = F1h1. Чтобы груз приподнять, нужно приложить в горизонтальном направлении силу . Когда тележка наклонится, удержать её позволит сила . Заметим, что F’2>F2 из-за того, что по мере «заваливания» тележки плечо h1 увеличивается, а плечо h2 — наоборот, уменьшается.

Рис. 3. Вес груза, подвешенного на перекинутой через блок верёвке, передаётся к точкам подвески каждой её ветвью поровну. В нашем случае натяжение каждой ветви составляет 1 кг (вес груза и блока 2 кг). Чтобы уравновесить подвешенный на блоке груз, нужен противовес, имеющий вдвое меньшую массу.

Рис. 4. Пара блоков, один из которых закреплён на неподвижной оси, а другой — на свободной, называется полиспастом. Если блоков два — это простой полиспаст, если четыре (то есть две пары) — это двукратный полиспаст, если восемь — четырёхкратный. Сколько блоков в полиспасте, во столько раз при подъёме можно выиграть в силе и ровно во столько же раз проиграть в расстоянии.

О массе, силе, весе, рычаге и не только

В 7 классе мы начали изучать физику по УМК Перышкина А.В.

Я спешила познакомиться с этой наукой, потому, что моя мама закончила физический факультет Куйбышевского государственного университета. Она всегда говорит, что физика – это очень интересно и очень увлекательно!

Сейчас я учусь в 9 классе, скоро экзамены. На ОГЭ, кроме математики и русского языка, я выбрала физику. Физика, действительно, очень интересная, увлекательная наука, но и сложная.

В повседневной жизни многие физические понятия используются неверно. Например, очень часто можно услышать: «Мой вес 40 килограмм» или «Этот тортик весит полкило». Но, вес и масса – это два разных понятия! Их нельзя путать.

В учебнике физики Перышкина А.В. за 7 класс в §19 мы найдем определение массы. Масса тела – это физическая величина, которая характеризует его инертность.

А в § 26 найдем определение веса. Вес тела – это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес.

Масса измеряется в килограммах, а вес в ньютонах.

Масса – это вещь постоянная. Массу можно изменить, если от тела, например, отломать кусочек. С весом все гораздо сложнее…

В 7 классе, до изучения второго закона Ньютона, в учебнике говорилось, что если тело и опора покоятся или движутся равномерно и прямолинейно, то вес тела равен силе тяжести и определяется по той же формуле:

Но следовало учитывать, что «сила тяжести действует на тело, а значит, приложена к самому телу, а вес действует на опору или подвес, т.е. приложен к опоре».

А в § 2 для дополнительного чтения, мы впервые узнали, что такое невесомость. В состоянии невесомости вес тела равен нулю, а сила тяжести, как и масса тела, нулю не равны.

Удивительно, но в момент прыжка, когда на нас действует только сила тяжести, а сопротивлением воздуха можно пренебречь, то наш вес равен нулю. Можно считать, что мы находимся в невесомости.

А вот в 9 классе в § 11 был введен второй закон Ньютона: ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе.

=

И поэтому, вес тела – это результат совместного решения двух уравнений, составленных в соответствии со вторым и третьим законами Ньютона.

Если тело лежит на неподвижной опоре относительно Земли, то на тело действуют сила тяжести направленная вертикально вниз, и сила нормального давления или сила реакции опоры. Силы, действующие на тело, уравновешивают друг друга. В соответствии с третьим законом Ньютона тело действует на опору с некоторой силой – весом, равной по модулю силе реакции опоры и направленной в противоположную сторону. Т.е. вес численно равен силе тяжести, это как раз то, о чем мы говорили в 7 классе.

Если же наше тело, будет находиться в лифте, который движется с ускорением, то вес тела может быть больше или меньше силы тяжести. Результат зависит от направления ускорения.

Таким образом, в физике принято строгое различие понятий веса, силы тяжести и массы. С точки зрения физики, приходя на рынок и обращаясь к продавцу, следовало бы говорить: «Дайте, пожалуйста, десять ньютон клубники». Но все уже привыкли к слову вес, как синониму термина «масса».

Но очень важно понимать, что это вовсе не одно и то же!

Однако, массы некоторых тел очень большие. А человеку часто приходится поднимать, двигать тяжелые предметы. С давних пор человек применяет различные вспомогательные приспособления для облегчения своего труда.

В § 55-56 учебника физики для 7 класса мы познакомились с простыми механизмами и в частности – рычагом.

В нашем современном мире рычаги находят широкое применение как в природе, так и в повседневной жизни, созданной человеком. Практически любой механизм, преобразующий механическое движение, в том или ином виде использует рычаги.

С помощью рычагов три тысячи лет назад при строительстве пирамид в Древнем Египте передвигали и поднимали на большую высоту тяжелые каменные плиты.

Рычаги позволяю получить выигрыш в силе!

Рычаги встречаются в разных частях тела человека и животных. Это, например, конечности, челюсти. Много рычагов можно увидеть в теле насекомых и птиц.

Рычаги так же распространены и в быту. Это и водопроводный кран, и дверь, и различные кухонные приборы

Правило рычага лежит в основе действия рычажных весов, различного рода инструментов и устройств, применяемых там, где требуется выигрыш в силе или в расстоянии.

Рычаг – это твёрдое тело, которое может вращаться вокруг точки опоры. Рычаг находится в равновесии, если сумма моментов сил равна нулю. Момент силы – это величина, равная произведению силы на плечо этой силы. M = Fl. Плечо – это кратчайшее расстояние от точки опоры, до линии, вдоль которой действует сила (перпендикуляр).

Различают рычаги 1 рода, в которых точка опоры располагается между точками приложения сил, и рычаги 2 рода, в которых точки приложения сил располагаются по одну сторону от опоры.

Среди рычагов 2 рода выделяют рычаги 3 рода, с точкой приложения «входящей» силы ближе к точке опоры, чем нагрузки, что даёт выигрыш в скорости и пути

Примеры: рычаги первого рода — детские качели (перекладина), ножницы; рычаги второго рода — тачка (точка опоры — колесо), приподнимание предмета ломом движением вверх; рычаги третьего рода — задняя дверь багажника или капот легковых автомобилей на гидравлических телескопических упорах, подъём кузова самосвала (с гидроцилиндром в центре), движение мышцами рук и ног человека и животных.

Рычаги очень часто встречаются в живой природе.

В скелете животных и человека все кости, имеющие некоторую свободу движения, являются рычагами.

  • у человека – кости рук и ног, нижняя челюсть, череп, фаланги пальцев,
  • у кошек рычагами являются подвижные когти;
  • у многих рыб – шипы спинного плавника;
  • у членистоногих – большинство сегментов их наружного скелета.

Рычажные механизмы скелета в основном рассчитаны на выигрыш в скорости при потере в силе. Особенно большие выигрыши в скорости получаются у насекомых.

Для осуществления полета крылья должны иметь особое расположение и возможность свободно двигаться. Крыло насекомых можно сравнить с двуплечим рычагом. Короткое плечо представлено его внутренней частью (основанием), которая скрыта под мембраной, а длинное располагается снаружи: собственно, эту видимую часть и принято считать крылом. На внутренней поверхности экзоскелета, сразу под местом сочленения крыла с телом, находится плотный выступ, который называют плейральным столбиком; данная структура играет роль точки опоры при взмахе крыльев.

Также рычажный механизм есть у цветка шалфея. От оси у тычинок шалфейного цветка отходят два плеча: длинное и короткое. На конце длинного, изогнутого, как у коромысла, плеча висит пыльцевой мешочек. А короткое плечо сплющено, оно-то и закрывает вход в глубину цветка. Потянется шмель своим хоботком к нектару и обязательно толкнет короткое плечо. А оно тотчас приведет в движение длинное плечо – коромысло. То в свою очередь ударяет по спине шмеля своими пыльниками – вот и сработал рычаг.

В скелете животных и человека все кости, имеющие некоторую свободу движения, являются рычагами, например, у человека – кости конечностей, нижняя челюсть, череп, фаланги пальцев.

Однажды я увидела в журнале рисунок, который захотелось использовать для оформления стенгазеты. Но рисунок был очень маленьким, а мне хотелось сохранить масштаб при увеличении его размеров. Я задумалась, как можно увеличить рисунок до нужных размеров. Оказывается, это можно сделать либо вручную «методом клеток», либо с помощью приборов: эпидиаскопа, или пантографа.

Пантограф (название происходит от двух греческих слов (pantos) – все и qrapho – пишу) – прибор в виде раздвижного шарнирного параллелограмма для перерисовки рисунков, чертежей, схем в другом (увеличенном или уменьшенном масштабе). В основе работы этого прибора тоже лежит рычаг. Важной особенностью пантографа является простота его конструкции и очень высокая «точность» скопированного изображения. Но купить пантограф в магазине оказалось делом не простым. Тогда я решила его изготовить самостоятельно.

Пантографы широко используются в технике.

Так одним из основных видов городского транспорта является трамвай. Большинство трамваев используют электротягу с подачей электроэнергии через воздушную контактную сеть с помощью токоприёмников, чаще всего токоприёмник изготовлен в виде пантографов.

Очень часто пантографы используют в мебели. В этом случае пантограф по представляет собой штангу с подъемным механизмом. Обеспечивая легкий доступ к верхнему ярусу, пантограф способствует более эффективному использованию внутреннего пространства шкафа и лучшей организации хранения вещей.

Практическая часть

Прежде чем изготовить пантограф, я изготовила качели – рычаги.

Качели с перемещаемым сиденьем

Всем известны обычные детские качели рычажного типа, когда 2 ребёнка садятся по разным концам качелей и качаются, поочерёдно отталкиваясь от земли ногами. Но дети бывают разного веса. И обычно лёгкий ребёнок сидит наверху, а тяжёлый перевешивает его. Последний должен больше работать ногами, чтобы качели хоть как-то качались. Чтобы уравнять работу обоих, можно сделать перемещаемое сиденье на конструкции качелей. Тогда в зависимости от веса ребёнка подбирается длина рычага и у обоих детей уравниваются возможности и количество отталкиваний от земли в единицу времени.

2 модель:
тяжёлый груз перевешивает ребёнка

3 модель: При перемещении сидения равновесие снова устанавливается

Изготовление пантографа

Воспользовавшись описанием изготовления пантографа с сайта «Мир самоделок»[5] я купила пластмассовые линейки, болты и гайки и изготовила свой пантограф.

Я изготовила анимационный материал, ссылка на который представлена: https://cloud.mail.ru/home/ВавилинаЕА.mkv

Работая над этим материалом, я не только повторила основные законы, определения. Я узнала много нового о рычагах. Изготовила пантограф и научилась его использовать. Изготовила небольшой анимационный материал.

Пожалуй, самое удивительное, это то, что когда я начала свою работу над проектом для участия во Всероссийском заочном конкурсе для обучающихся «Я учу физику», посвящённого 115-летию А.В. Пёрышкина, я не знала что получится. Оказывается, физические явления вокруг нас словно цепляются друг за друга. Так и хочется сказать: «Все взаимосвязано! А физика самая интересная и увлекательная наука!»

Простые механизмы.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм – это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы – это рычаг и наклонная плоскость.

Рычаг.

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7 : 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца – это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок – укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела – это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где – радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок, ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы “перекатывается” через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) – не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость – это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: “наклонная плоскость с углом “.

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).

Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2 : 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу Aполн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .

Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

Проектируем на ось Y:

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

Полезная работа, очевидно, равна:

Для искомого КПД получаем:

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

Обучающее видео
БЕСПЛАТНО

Техническая поддержка:
help@ege-study.ru (круглосуточно)

Полный онлайн-курс подготовки к ЕГЭ по математике. Структурировано. Четко. Без воды. Сдай ЕГЭ на 100 баллов!

Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

Все поля обязательны для заполнения

Премиум

Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса – от 3,5 до 4,5 часов.

  1. Уравнения (задача 13)
  2. Стереометрия (задача 14)
  3. Неравенства (задача 15)
  4. Геометрия (задача 16)
  5. Финансовая математика (задача 17)
  6. Параметры (задача 18)
  7. Нестандартная задача на числа и их свойства (задача 19).

Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум – репетитор-профессионал Анна Малкова.

Получи пятерку

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля – до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

Задачи комплекта «Математические тренинги – 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

Как пользоваться?

  1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
  2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
  3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
  4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
  5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

Стоимость комплекта «Математические тренинги – 2019» – всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

Это пробная версия онлайн курса по профильной математике.

Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

— 3 темы курса (из 50).
— Текстовый учебник с видеопримерами.
— Мастер-класс Анны Малковой.
— Тренажер для отработки задач.

Регистрируйтесь, это бесплатно!

Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

Читайте также:  Малый «ремкомплект» дачника из трех инструментов
Ссылка на основную публикацию